On Prime Ideals of Noetherian Skew Power Series Rings
نویسنده
چکیده
We study prime ideals in skew power series rings T := R[[y; τ, δ]], for suitably conditioned complete right noetherian rings R, automorphisms τ of R, and τ -derivations δ of R. Such rings were introduced by Venjakob, motivated by issues in noncommutative Iwasawa theory. Our main results concern “Cutting Down” and “Lying Over.” In particular, assuming that τ extends to a compatible automorphsim of T , we prove: If I is an ideal of R, then there exists a τ -prime ideal P of T contracting to I if and only if I is a τ -δ-prime ideal of R. Consequently, under the more specialized assumption that δ = τ − id (a basic feature of the Iwasawa-theoretic context), we can conclude: If I is an ideal of R, then there exists a prime ideal P of T contracting to I if and only if I is a τ -prime ideal of R. Our approach depends essentially on two key ingredients: First, the algebras considered are zariskian (in the sense of Li and Van Oystaeyen), and so the ideals are all topologically closed. Second, topological arguments can be used to apply previous results of Goodearl and the author on skew polynomial rings.
منابع مشابه
ON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملGoldie Ranks of Skew Power Series Rings of Automorphic Type
Let A be a semprime, right noetherian ring equipped with an automorphism α, and let B := A[[y;α]] denote the corresponding skew power series ring (which is also semiprime and right noetherian). We prove that the Goldie ranks of A and B are equal. We also record applications to induced ideals.
متن کاملOn Structure of Ideals in Skew Polynomial Rings over HNP Rings
An elegant and strong theory on noncommutative Noetherian rings has been developed in several groundbreaking works over the second half of the 20th century following the pioneering research of Alfred Goldie in the 1960s. The theory is still an active research area in Algebra and features many important classes of rings such as matrix rings, polynomial rings, differential operator rings, group r...
متن کاملON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملNoetherian Skew Inverse Power Series Rings
We study skew inverse power series extensions R[[y−1; τ, δ]], where R is a noetherian ring equipped with an automorphism τ and a τ -derivation δ. We find that these extensions share many of the well known features of commutative power series rings. As an application of our analysis, we see that the iterated skew inverse power series rings corresponding to nth Weyl algebras are complete, local, ...
متن کامل